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Cycles in a synchronous neural network
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Abstract. We extend the standard calculation of the number of metastable states (fixed points)
so as to take into account cyclic attractors as well. We calculate analytically the average number
of cycles in the Little model as a function of the fraction of flipping spins(1− q)/2. We find
that the cycles of length two are by far the most common type of attractors. In particular, for
small values of the storage parameter, the inverse cycles (q = −1) are the dominant attractors.

The most popular neural network model of associative memory is probably the Hopfield
model (Hopfield 1982). In this model the neurons are modelled by spinsSi = ±1, i =
1, . . . , N that evolve according to the neural dynamics

Si(t + 1) = sign

(∑
j

Jij Sj (t)

)
i = 1, . . . , N (1)

with the synaptic couplingsJij given by the Hebb rule

Jij = 1

N

P∑
l=1

ξ li ξ
l
j . (2)

Here theP binary patternsξ l = (ξ l1, . . . , ξ lN ), l = 1, . . . , P are the items one wants to store
in the network. It is usually assumed that the componentsξ li are randomly chosen as±1
with equal probability, and that the number of patterns scales linearly withN , i.e.P = αN .
The retrieval of a stored pattern will depend on its proximity to the initial stateS(t = 0),
hence the denomination of content-addressable memory for this type of information storage
system.

The update in the Hopfield model is asynchronous or sequential, i.e. the spins are
updated one after the other in either a fixed or variable order. This fact, together with
the symmetry of the synaptic couplings, implies that the neural dynamics minimizes the
energy functionE = − 1

2

∑
ij Jij SiSj , and hence that its stationary states are fixed points

only (Hopfield 1982). These results have allowed the use of the powerful tools of the
equilibrium statistical mechanics to investigate the nature of the stationary states of the
Hopfield model (Amitet al 1987). An interesting alternative to the sequential update is
the synchronous or parallel update, where all neurons are updated simultaneously. This
leads to the Little model (Little 1974) which, in the case of symmetric couplings, has limit
cycles of length two in addition to fixed points (Peretto 1984, Frumkin and Moses 1986).
Moreover, as pointed out by Peretto (1984), the parallel dynamics minimizes the energy

0305-4470/97/196655+05$19.50c© 1997 IOP Publishing Ltd 6655



6656 J F Fontanari

E = −∑i |
∑
j Jij Si |, thus allowing the use of statistical mechanics techniques to study

the equilibrium properties of the model (Fontanari and Köberle 1988).
Besides the standard equilibrium statistical mechanics approach mentioned above, which

is restricted to neural networks with symmetric couplings, there is a powerful technique that
can be used to study analytically networks with non-symmetric couplings as well, namely,
the counting of the average number of metastable states, i.e. states that are stable to all
single spin flips (Bray and Moore 1980, Gardner 1986, Treves and Amit 1988). However,
up to now this method has been only applied to the study of sequential dynamics, which
is understandable since the fixed points are the same for both types of update. In this note
we extend that method so as to take into account the periodic attractors as well. More
specifically, we calculate the average number of cycles of length two of the Little model as
a function of the storage parameterα and the fraction of flipping spins(1− q)/2.

As in the thermodynamic calculation, to investigate the stationary states of the Little
model we need to duplicate the configuration space (Fontanari and Köberle 1988). Thus,
two statesS and σ belong to a cycle of length two if they satisfy simultaneously the
inequalities

Si
∑
j

Jij σj > 0 and σi
∑
j

Jij Sj > 0 (3)

for i = 1, . . . , N . The generalization of these constraints to describe cycles of larger
length is straightforward. The average number of cycles of length two with a fixed fraction
(1− q)/2 of flipping spins is thus given simply by

〈Nq〉 =
〈∑
S

∑
σ

δ

(
Nq,

N∑
i

Siσi

)[ N∏
i

2

(
Si
∑
j

Jij σj

)
2

(
σi
∑
j

Jij Sj

)]〉
(4)

whereδ(m, n) is the Kronecker delta, and2(x) = 1 if x > 0 and 0 otherwise. Here the
notation〈. . .〉 stands for the average over the set of stored patterns. Forq = 1 we recover
the calculation of the number of fixed points (Gardner 1986, Amit and Treves 1988), while
for q = −1 we have cycles in which the states are inverse of each other (mirror states). We
note that the inverse cycles were the only ones detected in the thermodynamic calculation
(Fontanari and K̈oberle 1988).

As the calculations are straightforward and rather unilluminating we will only sketch it
in the sequel. The first step is to extract the terms onJij from the arguments of the theta
functions. This can be done with the aid of delta functions, yielding:

〈Nq〉 =
∫ ∞
−∞

N∏
i

dxi dx̃i
2π

2(xi)e
ixi x̃i

∫ ∞
−∞

N∏
i

dyi dỹi
2π

2(yi)e
iyi ỹi

∫ π

−π

dq̃

2π
eiNqq̃

×
〈∑
S

∑
σ

exp

[
− iq̃

∑
i

Siσi − i
∑
ij

Jij (x̃iSiσj + ỹiσiSj )
]〉

(5)

where we have also used the integral representation of the Kronecker delta. The average
over the stored patterns can be easily carried out by introducing the auxiliary parameters
Nml = ∑

i Siξ
l
i and Nnl = ∑

i σiξ
l
i . After performing the averages, we introduce

the following saddle-point parameters:NAx =
∑

i x̃
2
i , NAy =

∑
i ỹ

2
i , NBx =

∑
i x̃i ,

NBy =
∑

i ỹi , NCx =
∑

i x̃iSiσi , NCy =
∑

i ỹiSiσi , ND =
∑

i x̃i ỹiSiσi , and their
respective Lagrange multipliers. The final result for the exponentf = 1

N
ln〈Nq〉, obtained

via a saddle-point integration, is

f = qq̃ + AxÃx + AyÃy + BxB̃x + ByB̃y + CxC̃x + CyC̃y +DD̃
+α(Cx + Cy)+ αG1(Ax,Ay, Bx, By, Cx, Cy,D)
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+G0(q̃, Ãx, Ãy, B̃x, B̃y, C̃x, C̃y, D̃) (6)

where

G1 = ln
∫

dm dm̃

2π

∫
dn dñ

2π
exp[− 1

2Axn
2− 1

2Aym
2−Dmn] exp[− 1

2m̃
2− 1

2ñ
2− qm̃ñ]

× exp[im̃(Bxn+ Cym)+ iñ(Bym+ Cxn)] (7)

and

G0 = ln
∑
S

∑
σ

exp(−q̃Sσ )
∫

dx dx̃

2π
2(x)

∫
dy dỹ

2π
2(y) exp[−Ãx x̃2− Ãy ỹ2]

× exp[−D̃x̃ỹSσ − ix̃(B̃x + C̃xSσ )− iỹ(B̃y + C̃ySσ )]. (8)

The saddle-point parameters and their Lagrange multipliers are determined so as to maximize
f . To proceed further we assume the symmetric ansatzAx = Ay = A, and similarly for
the other saddle-point parameters, which corresponds to the sensible strategy of leaving the
symmetryS ↔ σ intact. With this ansatz the evaluation ofG1 andG0 is greatly facilitated,
yielding

G1 = − 1
2 ln{(A2−D2)(1− q2)+ [B2− (1+ C)2]

−4B(1+ C)(D + qA)+ 2[B2+ (1+ C)2](A+ qD)} (9)

and

G0 = ln

{
e−q̃

∫ ∞
−(B̃+C̃)/2Ã1/2

Dz erfc

[
−Ã1/2(B̃ + C̃)− zD̃
(4Ã2− D̃2)1/2

]

+eq̃
∫ ∞
−(B̃−C̃)/2Ã1/2

Dz erfc

[
−Ã1/2(B̃ − C̃)+ zD̃
(4Ã2− D̃2)1/2

]}
(10)

where Dz = dz/
√
πe−z

2
is the Gaussian measure. We are left then with the highly non-

trivial numerical problem of maximizing the function

f = qq̃ + 2AÃ+ 2BB̃ + 2C(C̃ + α)+DD̃ + αG1(A,B,C,D)+G0(q̃, Ã, B̃, C̃, D̃)

(11)

with respect to seven parameters. Fortunately, an appropriate redefinition of these parameters
allows us to reduce the problem to the solution of three coupled saddle-point equations only.

The result of the numerical maximization of equation (11) is presented in figure 1, which
shows the exponentf as a function of the storage parameterα for several values ofq. For
the sake of clarity we present only the region of positive values off . We note that, for
a givenq, a negativef indicates that for almost all realizations of the stored patterns that
type of cycle is absent. In particular, forα = 0 we findf = ln 2 for q = −1, f = 0 for
q = 1, andf → −∞ for all other values ofq. Moreover, except for the casesq = ±1,
the curves present a maximum which, due to the range ofα used in figure 1, is perceptible
for q = −0.95 only. Forα → ∞ all curves tend to the result obtained for the SK model
(Sherrington and Kirkpatrick 1975), namely,f ≈ 0.1992 (Bray and Moore 1980). For
small α the inverse cycles (q = −1) are the dominant ones, but forα ≈ 0.7 other cycles
with |q| < 1 become dominant. A systematic study of the value ofq that maximizesf for
a givenα was not possible due to the extreme unwieldliness of the system of saddle-point
equations.

A rather unexpected, but not difficult to understand, outcome of our analysis is the
dominance of the inverse cycles for smallα. For simplicity, let us consider the infinite
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Figure 1. The exponentf in 〈Nq 〉 = exp(Nf ) as a function of the storage parameterα for
q = −1 (inverse cycles),−0.95,−0.8, −0.5, 0, 0.5 and 1 (fixed points).

range ferromagnetic Ising model, whose configuration space is dominated by states with
zero magnetization

∑
i Si = 0. Given one such state, half of the spins will be stable and

half unstable. The simultaneous flipping of the unstable spins will very likely unstabilize
the other half. The process is then repeated leading to an inverse cycle.

In summary, we have extended the general analytical method of counting the number of
metastable states (fixed points) in order to take into account cyclic attractors as well. The
technique applied to the Little model has shown that the cycles of length two are by far
the most common type of attractors. Thus, if the design of associative memories aims at
minimizing the number of spurious attractors, the sequential dynamics must be the preferred
one. It would be interesting to apply this method to investigate analytically the effects of
random dilution and asymmetry in the length of the attractors for a simpler model as, for
instance, the synchronous SK model (Gutfreundet al 1988).
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